Chemical Reaction

Chemical change requires a chemical reaction, a process whereby the chemical properties of a substance are altered by a rearrangement of the atoms in the substance. Of course we cannot see atoms with the naked eye, but fortunately, there are a number of clues that tell us when a chemical reaction has occurred. In many chemical reactions, for instance, the substance may experience a change of state or phase—as for instance when liquid water turns into gaseous oxygen and hydrogen as a result of electrolysis.

Symbols in a Chemical Equation

Chemical equations usually include notation indicating the state or phase of matter for the reactants and products. These symbols are as follows:

  • (s): solid
  • (l): liquid
  • (g): gas
  • (aq): dissolved in water (an aqueous solution)

Balancing Chemical Equations

When checking a chemical equation, one should always break it down into its constituent elements, to determine whether all the atoms on the left side reappear on the right side; otherwise, the result may be an incorrect equation, along the lines of “1 + 1 = 1.” That is exactly what has happened here. On the left side, we have two hydrogen atoms and two oxygen atoms; on the right side, however, there is only one oxygen atom to go with the two hydrogens.

Obviously, this equation needs to be corrected to account for the second oxygen atom, and the best way to do that is to show a second water molecule on the right side. This will be represented by a 2 before the H2O, indicating that two water molecules now have been created. The 2, or any other number used for showing more than one of a particular chemical species in a chemical equation, is called a coefficient. Now we have H2(g) + O2(g) →2H2O(l).

Is this right? Once again, it is time to analyze the equation, to see if the number of atoms on the left equals the number on the right. Such analysis can be done in a number of ways: for instance, by symbolizing each chemical species as a circle with chemical symbols for each element in it. Thus a single water molecule would be shown as a circle containing two H’s and one O.

Whatever the method used, analysis will reveal that the problem of the oxygen imbalance has been solved: now there are two oxygens on the left, and two on the right. But solving that problem has created another, because now there are four hydrogen atoms on the right, as compared with two on the left. Obviously, another coefficient of 2 is needed, this time in front of the hydrogen molecule on the left. The changed equation is thus written as: 2H2(g) + O2(g) → 2H2O(l). Now, finally, the equation is correct.

The Process of Balancing Chemical Equations

What we have done is to balance an unbalanced equation. An unbalanced equation is one in which the numbers of atoms on the left are not the same as the number of atoms on the right. Though an unbalanced equation is incorrect, it is sometimes a necessary step in the process of finding the balanced equation—one in which the number of atoms in the reactants and those in the product are equal.

In writing and balancing a chemical equation, the first step is to ascertain the identities, by formula, of the chemical species involved, as well as their states of matter. After identifying the reactants and product, the next step is to write an unbalanced equation. After that, the unbalanced equation should be subjected to analysis, as demonstrated above.

The example used, of course, involves a fairly simple substance, but often, much more complex molecules will be part of the equation. In performing analysis to balance the equation, it is best to start with the most complex molecule, and determine whether the same numbers and proportions of elements appear in the product or products. After the most complicated molecule has been dealt with, the second-most complex can then be addressed, and so on.

Assuming the numbers of atoms in the reactant and product do not match, it will be necessary to place coefficients before one or more chemical species. After this has been done, the equation should again be checked, because as we have seen, the use of a coefficient to straighten out one discrepancy may create another. Note that only coefficients can be changed; the formulas of the species themselves (assuming they were correct to begin with) should not be changed.

After the equation has been fully balanced, one final step is necessary. The coefficients must be checked to ensure that the smallest integers possible have been used. Suppose, in the above exercise, we had ended up with an equation that looked like this: 12H2(g) + 6O2(g) →12H2O(l). This is correct, but not very “clean.” Just as a fraction such as 12/24 needs to be reduced to its simplest form, 1/2, the same is true of a chemical equation. The coefficients should thus always be the smallest number that can be used to yield a correct result.

Types of Chemical Reactions

Combination and Decomposition

A synthesis, or combination, reaction is one in which a compound is formed from simpler materials—whether those materials be elements or simple compounds. A basic example of this is the reaction described earlier in relation to chemical equations, when hydrogen and oxygen combine to form water. On the other hand, some extremely complex substances, such as the polymers in plastics and synthetic fabrics such as nylon, also involve synthesis reactions.

When iron rusts (in other words, it oxidizes in the presence of air), this is both an oxidation-reduction and a synthesis reaction. This also represents one of many instances in which the language of science is quite different from everyday language. If a piece of iron—say, a railing on a balcony—rusts due to the fact that the paint has peeled off, it would seem from an unscientific standpoint that the iron has “decomposed.” However, rust (or rather, metal oxide) is a more complex substance than the iron, so this is actually a synthesis or combination reaction.

A true decomposition reaction occurs when a compound is broken down into simpler compounds, or even into elements. When water is subjected to electrolysis such that the hydrogen and oxygen are separated, this is a decomposition reaction. The fermentation of grapes to make wine is also a form of decomposition.

And then, of course, there are the processes that normally come to mind when we think of “decomposition”: the decay or rotting of a formerly living thing. This could also include the decay of something, such as an item of food, made from a formerly living thing. In such instances, an organic substance is eventually broken down through a number of processes, most notably the activity of bacteria, until it ultimately becomes carbon, nitrogen, oxygen, and other elements that are returned to the environment.

Single and Double Displacement

The reaction referred to in the preceding paragraph also happens to be an example of another type of reaction, because two anions (negatively charged ions) have been exchanged. Initially K+ and CrO42− were together, and these reacted with a compound in which Ba2+ and NO3 were combined. The anions changed places, an instance of a double-displacement reaction, which is symbolized thus: AB + CD →AD + CB.

It is also possible to have a single-displacement reaction, in which an element reacts with a compound, and one of the elements in the compound is released as a free element. This can be represented symbolically as A + BC →B + AC. Single-displacement reactions often occur with metals and with halogens. For instance, a metal(A) reacts with an acid (BC) to produce hydrogen (B) and a salt (AC).

Speeding Up a Chemical Reaction

Essentially, a chemical reaction is the result of collisions between molecules. According to this collision model, if the collision is strong enough, it can break the chemical bonds in the reactants, resulting in a rearrangement of the atoms to form products. The more the molecules collide, the faster the reaction. Increase in the numbers of collisions can be produced in two ways: either the concentrations of the reactants are increased, or the temperature is increased. In either case, more molecules are colliding.

Increases of concentration and temperature can be applied together to produce an even faster reaction, but rates of reaction can also be increased by use of a catalyst, a substance that speeds up the reaction without participating in it either as a reactant or product. Catalysts are thus not consumed in the reaction. One very important example of a catalyst is an enzyme, which speeds up complex reactions in the human body. At ordinary body temperatures, these reactions are too slow, but the enzyme hastens them along. Thus human life can be said to depend on chemical reactions aided by a wondrous form of catalyst.

Where to Learn More

Bender, Hal. “Chemical Reactions.” Clackamas Community College (Web site). <http://dl.clackamas.cc.or.us/ch104-01/chemical.htm> (June 3, 2001).

“Catalysis, Separations, and Reactions.” Accelrys (Web site). <http://www.accelrys.com/chemicals/catalysis/> (June 3, 2001).

Goo, Edward. “Chemical Reactions” (Web site). <http://www-classes.usc.edu/engr/ms/125/MDA125/reactions/> (June 3, 2001).

Knapp, Brian J. Oxidation and Reduction. Illustrated by David Woodroffe. Danbury, CT: Grolier Educational, 1998.

Knapp, Brian J. Energy and Chemical Change. Illustrated by David Woodroffe. Danbury, CT: Grolier Educational, 1998.

Newmark, Ann. Chemistry. New York: Dorling Kindersley, 1993.

“Periodic Table: Chemical Reaction Data.” WebElements (Web site). <http://www.webelements.com/webelements/elements/text/periodic-table/chem.html>(June 3, 2001).

Richards, Jon. Chemicals and Reactions. Brookfield, CT: Copper Beech Books, 2000.

“Types of Chemical Reactions” (Web site). <http://www.usoe.k12.ut.us/curr/science/sciber00/8th/matter/sciber/chemtype.htm> (June 3, 2001).

Zumdahl, Steven S. Introductory Chemistry: A Foundation, 4th ed. Boston: Houghton Mifflin, 2000.

Ditulis dalam Fisika. Tag: . 3 Comments »

3 Tanggapan to “Chemical Reaction”

  1. Apriel 7dhe Says:

    Konbanwa…..
    pak wida, download soal.a dimana?
    g da keterangan nya…
    brarti g bisa download y??

  2. hong Says:

    this is the foundation of chemistry !
    maybe you can visit this web to see the foundation of titration :
    http://acid-base-titration.blogspot.com/2010/10/nature-of-acid-base-titration.html

  3. buy alprazolam Says:

    If some one needs expert view about running a blog
    afterward i recommend him/her to go to see this website, Keep up the fastidious work.


Tinggalkan komentar